Автор Тема: Новости науки и технологии  (Прочитано 1480351 раз)

Оффлайн Новичёк

  • Administrator
  • Hero
  • *****
  • Сообщений: 15295
  • Репутация: +27/-108
    • Личное сообщение (Оффлайн)
Re: Новости науки и технологии
« Ответ #6100 : Июня 19, 2022, 23:42:36 »
Самая простая и наиболее правдоподобная теория о происхождении темной материи

Астрофизики провели исследование и выяснили, какие моменты должны учесть существующие альтернативные теории гравитации, чтобы описать влияние темной материи.



Milennium-II Simulation

Кроме модели Лямбда-CDM, которая вводит темную материю для описания наблюдаемых явлений, существует несколько альтернативных космологических теорий. Теперь физики наложили на них такие ограничения, что все они оказались неверными

Согласно принятой в научном сообществе модели ΛCDM (Лямбда-CDM) в нашей Вселенной помимо барионной материи существует также темная материя и холодная темная материя. Эта модель хорошо описывает и объясняет ускоренное расширение Вселенной, чем не могут похвастаться другие теории. Вот только обнаружить частицы, составляющие темную материю, ученым пока не удалось.

В некоторых альтернативных теориях гравитации не вводится темная материя. Но наблюдаемые эффекты, которые ΛCDM объясняет наличием этого типа материи, никуда не исчезают. Поэтому альтернативные теории должны как-то выкручиваться, чтобы описать эти экспериментальные факты. Два астрофизика из Лаборатории реактивного движения NASA и Принстонского университета решили облегчить задачу некоторым теоретикам и провели исследование, в результате которого наложили ограничения на альтернативные космологические модели.

Исследователи обнаружили, что ни одна из теорий гравитации, предложенных до сих пор, не удовлетворяет выявленным ими ограничениям. Это значит, что если эффекты от воздействия темной материи можно объяснить альтернативной теорией, а не ΛCDM, то такая теория еще не разработана. В будущем работа физиков может послужить основой для разработки новых теорий гравитации, которые в большей степени согласуются с космологическими наблюдениями.

По словам исследователей, альтернативная теория, удовлетворяющая их критериям, должна быть настолько уникальной, что согласно ей галактики вблизи Млечного Пути двигались бы по «сумасшедшим» траекториям. Таким образом, самое простое объяснение для темной материи все еще заключается в том, что она состоит из частиц, которые слабо взаимодействуют с барионной материей.

Источник: TechInsider

Оффлайн Новичёк

  • Administrator
  • Hero
  • *****
  • Сообщений: 15295
  • Репутация: +27/-108
    • Личное сообщение (Оффлайн)
Re: Новости науки и технологии
« Ответ #6101 : Июня 19, 2022, 23:46:49 »
Квантовая теория позволила повернуть время вспять и нарушить второй закон термодинамики

В 2017 году международной команде ученых удалось осуществить весьма любопытный эксперимент.




Второй закон термодинамики гласит, что в изолированной системе энтропия нарастает со временем, и движение тепла осуществляется от более горячих тел к более холодным. Однако эксперимент, проведенный международной группой ученых, опровергает это положение и доказывает, что термодинамическая «стрела времени» не является абсолютной концепцией.

Как повернуть время вспять

В рамках эксперимента ученые обратились к коррелированным частицам. Их концепт похож на концепт частиц, образующих квантовую запутанность, однако они не так тесно связаны друг с другом. Исследователи начали работу с изучения молекулы трихлорметана: они нагрели ядро атома водорода так, чтобы оно было теплее ядра атома углерода, и наблюдали за током энергии.

Когда ядра двух атомов находились в некоррелированном состоянии, тепло, согласно второму закону термодинамики, и в самом деле двигалось от более теплого к более холодному ядру. Однако после корреляции ядер ученые внезапно увидели, что тепло потекло «назад» — нагретое ядро становилось все горячее, а его более холодный сосед принялся остывать.

По мнению исследователей, их эксперимент не нарушает второй закон термодинамики, поскольку тот попросту не учитывает коррелирование частиц. Успешный опыт демонстрирует скорее исключение из правила. Статья, в которой изложены ход и результаты эксперимента, опубликована на сервере arXiv.

Значение эксперимента



Данный опыт является отличной демонстрацией того, что даже в привычных системах окружающего нас мира могут скрываться тайны, которые еще только предстоит разгадать. Каждое новое открытие приводит к все новым вопросам — как знать, не изменятся ли фундаментальные основы привычной нам науки через несколько десятков лет?

Поскольку все больше исследований опирается на квантовые вычисления, возможно именно эта область физики и математики позволит нам разгадать самые главные тайны Вселенной — найти и выделить темную материю, подчинить себе время или даже вывести «универсальное уравнение бытия», которое объяснило бы совокупность и закономерность всех процессов, происходящих в нашем мире.

Источник: TechInsider

Оффлайн Новичёк

  • Administrator
  • Hero
  • *****
  • Сообщений: 15295
  • Репутация: +27/-108
    • Личное сообщение (Оффлайн)
Re: Новости науки и технологии
« Ответ #6102 : Июня 19, 2022, 23:55:17 »
Как устроен детектор гравитационных аномалий: бессмертное наследие Альберта Эйнштейна

Спустя сто лет после теоретического предсказания, которое в рамках общей теории относительности сделал Альберт Эйнштейн, ученым удалось подтвердить существование гравитационных волн. Начинается эра принципиально нового метода изучения далекого космоса – гравитационно-волновой астрономии.




Открытия бывают разные. Бывают случайные, в астрономии они встречаются часто. Бывают не совсем случайные, сделанные в результате тщательного «прочесывания местности», как, например, открытие Урана Вильямом Гершелем. Бывают серендипические — когда искали одно, а нашли другое: так, например, открыли Америку. Но особое место в науке занимают запланированные открытия. Они основаны на четком теоретическом предсказании. Предсказанное ищут в первую очередь для того, чтобы подтвердить теорию. Именно к таким открытиям относятся обнаружение бозона Хиггса на Большом адронном коллайдере и регистрация гравитационных волн с помощью лазерно-интерферометрической гравитационно-волновой обсерватории LIGO. Но для того чтобы зарегистрировать какое-то предсказанное теорией явление, нужно довольно неплохо понимать, что именно и где искать, а также какие инструменты необходимы для этого.



Как устроен детектор LIGO

В лазерных интерферометрах LIGO и VIRGO луч лазера делится зеркалом и попадает в два перпендикулярных плеча. После того как свет в каждом плече пробегает туда и обратно несколько сотен раз, лучи вновь сходятся и интерферируют. Прибор настроен таким образом, чтобы максимум волны из одного плеча точно совпадал с минимумом из другого и результатом интерференции на детекторе был ноль. А если длина плеч меняется, то на детекторе появляется ненулевой сигнал. Именно ток, считываемый с фотодетектора, и содержит информацию о свойствах гравитационного сигнала. Таким образом можно очень точно измерить параметры волны, которая на протяжении десятков миллисекунд с высокой частотой сдвигает зеркала. Сам сдвиг был бы ничтожно маленьким, гораздо меньше размера протона. Но важно, что измеряется не прямо эта крошечная длина, а хорошо определяемые электрические параметры в силовой установке, возвращающей зеркало на место.

Что ищем

Гравитационные волны традиционно называют предсказанием общей теории относительности (ОТО), и это в самом деле так (хотя сейчас такие волны есть во всех моделях, альтернативных ОТО или же дополняющих ее). К появлению волн приводит конечность скорости распространения гравитационного взаимодействия (в ОТО эта скорость в точности равна скорости света). Такие волны — возмущения пространства-времени, распространяющиеся от источника. Для возникновения гравитационных волн необходимо, чтобы источник пульсировал или ускоренно двигался, но определенным образом. Скажем, движения с идеальной сферической или цилиндрической симметрией не подходят. Таких источников достаточно много, но часто у них маленькая масса, недостаточная для того, чтобы породить мощный сигнал. Ведь гравитация — самое слабое из четырех фундаментальных взаимодействий, поэтому зарегистрировать гравитационный сигнал очень трудно. Кроме того, для регистрации нужно, чтобы сигнал быстро менялся во времени, то есть имел достаточно высокую частоту. Иначе нам не удастся его зарегистрировать, так как изменения будут слишком медленными. Значит, объекты должны быть еще и компактными.



Первоначально большой энтузиазм вызывали вспышки сверхновых, происходящие в галактиках вроде нашей раз в несколько десятков лет. Значит, если удастся достичь чувствительности, позволяющей видеть сигнал с расстояния в несколько миллионов световых лет, можно рассчитывать на несколько сигналов в год. Но позднее оказалось, что первоначальные оценки мощности выделения энергии в виде гравитационных волн во время взрыва сверхновой были слишком оптимистичными, и зарегистрировать подобный слабый сигнал можно было бы только в случае, если б сверхновая вспыхнула в нашей Галактике.

Еще один вариант массивных компактных объектов, совершающих быстрые движения, — нейтронные звезды или черные дыры. Мы можем увидеть или процесс их образования, или процесс взаимодействия друг с другом. Последние стадии коллапса звездных ядер, приводящие к образованию компактных объектов, а также последние стадии слияния нейтронных звезд и черных дыр имеют длительность порядка нескольких миллисекунд (что соответствует частоте в сотни герц) — как раз то что надо. При этом выделяется много энергии, в том числе (а иногда и в основном) в виде гравитационных волн, так как массивные компактные тела совершают те или иные быстрые движения. Вот они — наши идеальные источники.

Правда, сверхновые вспыхивают в Галактике раз в несколько десятков лет, слияния нейтронных звезд происходят раз в пару десятков тысяч лет, а черные дыры сливаются друг с другом еще реже. Зато сигнал гораздо мощнее, и его характеристики можно достаточно точно рассчитать. Но теперь нам надо научиться видеть сигнал с расстояния в несколько сотен миллионов световых лет, чтобы охватить несколько десятков тысяч галактик и обнаружить несколько сигналов за год.



Во время обкатки технологий на LIGO и VIRGO группа ученых работала над методами борьбы с шумами. Просчитывались и ожидаемое количество событий, и форма сигнала. Дело в том, что чем точнее мы знаем форму сигнала, тем проще распознать его среди шума. Это можно сравнить с распознаванием слов на малой громкости – когда говорят известные вам слова, проблем не возникает, а незнакомое слово вы не можете разобрать. Для проверки алгоритмов выявления полезного сигнала руководители проекта подбросили в поток анализируемых данных фальшивый всплеск, подтвердивший работоспособность схем. Представьте, каким стрессом для ученых было узнать, что обнаруженное событие – лишь тестовое испытание, а не настоящий результат!

Чем ищем

Определившись с источниками, начнем проектировать детектор. Для этого надо понять, что же делает гравитационная волна. Не вдаваясь в детали, можно сказать, что прохождение гравитационной волны вызывает приливную силу (обычные лунные или солнечные приливы — это отдельное явление, и гравитационные волны тут ни при чем). Так что можно взять, например, металлический цилиндр, снабдить датчиками и изучать его колебания. Это несложно, поэтому такие установки начали делать еще полвека назад (есть они и в России, сейчас в Баксанской подземной лаборатории монтируется усовершенствованный детектор, разработанный командой Валентина Руденко из ГАИШ МГУ). Проблема в том, что такой прибор будет видеть сигнал без всяких гравитационных волн. Есть масса шумов, с которыми трудно бороться. Можно (и это было сделано!) установить детектор под землей, попытаться изолировать его, охладить до низких температур, но все равно для того, чтобы превысить уровень шума, понадобится очень мощный гравитационно-волновой сигнал. А мощные сигналы приходят редко.



Поэтому был сделан выбор в пользу другой схемы, которую в 1962 году выдвинули Владислав Пустовойт и Михаил Герценштейн. В статье, опубликованной в ЖЭТФ (Журнал экспериментальной и теоретической физики), они предложили использовать для регистрации гравитационных волн интерферометр Майкельсона. Луч лазера бегает между зеркалами в двух плечах интерферометра, а затем лучи из разных плеч складываются. Анализируя результат интерференции лучей, можно измерить относительное изменение длин плеч. Это очень точные измерения, поэтому, если победить шумы, можно достичь фантастической чувствительности.

В начале 1990-х было принято решение о строительстве нескольких детекторов по такой схеме. Первыми в строй должны были войти относительно небольшие установки, GEO600 в Европе и TAMA300 в Японии (числа соответствуют длине плеч в метрах) для обкатки технологии. Но основными игроками должны были стать установки LIGO в США и VIRGO в Европе. Размер этих приборов измеряется уже километрами, а окончательная плановая чувствительность должна была бы позволить видеть десятки, если не сотни событий в год.



Почему нужны несколько приборов? В первую очередь для перекрестной проверки, поскольку существуют локальные шумы (например, сейсмические). Одновременная регистрация сигнала на северо-западе США и в Италии была бы прекрасным свидетельством его внешнего происхождения. Но есть и вторая причина: гравитационно-волновые детекторы очень плохо определяют направление на источник. А вот если разнесенных детекторов будет несколько, указать направление можно будет довольно точно.

Лазерные исполины

В своем первоначальном виде детекторы LIGO были построены в 2002 году, а VIRGO — в 2003-м. По плану это был лишь первый этап. Все установки поработали по несколько лет, а в 2010—2011 годах были остановлены для доработки, чтобы затем выйти на плановую высокую чувствительность. Первыми заработали детекторы LIGO в сентябре 2015 года, VIRGO должна присоединиться во второй половине 2016-го, и начиная с этого этапа чувствительность позволяет надеяться на регистрацию как минимум нескольких событий в год.

После начала работы LIGO ожидаемый темп всплесков составлял примерно одно событие в месяц. Астрофизики заранее оценили, что первыми ожидаемыми событиями должны стать слияния черных дыр. Связано это с тем, что черные дыры обычно раз в десять тяжелее нейтронных звезд, сигнал получается мощнее, и его «видно» с больших расстояний, что с лихвой компенсирует меньший темп событий в расчете на одну галактику. К счастью, долго ждать не пришлось. 14 сентября 2015 года обе установки зарегистрировали практически идентичный сигнал, получивший наименование GW150914.



С помощью довольно простого анализа можно получить такие данные, как массы черных дыр, мощность сигнала и расстояние до источника. Масса и размер черных дыр связаны очень простым и хорошо известным образом, а по частоте сигнала сразу можно оценить размер области выделения энергии. В данном случае размер указывал на то, что из двух дыр массой 25−30 и 35−40 солнечных масс образовалась черная дыра с массой более 60 солнечных масс. Зная эти данные, можно получить и полную энергию всплеска. В гравитационное излучение (по формуле E = mc2) перешло почти три массы Солнца. Это соответствует светимости 1023 светимостей Солнца — примерно столько же, сколько за это время (сотые доли секунды) излучают все звезды в видимой части Вселенной. А из известной энергии и величины измеренного сигнала получается расстояние. Большая масса слившихся тел позволила зарегистрировать событие, произошедшее в далекой галактике: сигнал шел к нам примерно 1,3 млрд лет.

Более детальный анализ позволяет уточнить отношение масс черных дыр и понять, как они вращались вокруг своей оси, а также определить и некоторые другие параметры. Кроме того, сигнал с двух установок позволяет примерно определить направление всплеска. К сожалению, пока тут точность не очень велика, но с вводом в строй обновленной VIRGO она возрастет. А еще через несколько лет начнет принимать сигналы японский детектор KAGRA. Затем один из детекторов LIGO (изначально их было три, одна из установок была сдвоенной) будет собран в Индии, и ожидается, что тогда будут регистрироваться многие десятки событий в год.



Эра новой астрономии

На данный момент самый важный результат работы LIGO — это подтверждение существования гравитационных волн. Кроме того, уже первый всплеск позволил улучшить ограничения на массу гравитона (в ОТО он имеет нулевую массу), а также сильнее ограничить отличие скорости распространения гравитации от скорости света. Но ученые надеются, что уже в 2016 году они смогут получать с помощью LIGO и VIRGO много новых астрофизических данных.

Во-первых, данные гравитационно-волновых обсерваторий — это новый канал изучения черных дыр. Если ранее можно было только наблюдать потоки вещества в окрестностях этих объектов, то теперь можно прямо «увидеть» процесс слияния и «успокоения» образующейся черной дыры, как колеблется ее горизонт, принимая свою окончательную форму (определяемую вращением). Наверное, вплоть до обнаружения хокинговского испарения черных дыр (пока что этот процесс остается гипотезой) изучение слияний будет давать лучшую непосредственную информацию о них.

Во-вторых, наблюдения слияний нейтронных звезд дадут много новой, крайне нужной информации об этих объектах. Впервые мы сможем изучать нейтронные звезды так, как физики изучают частицы: наблюдать за их столкновениями, чтобы понять, как они устроены внутри. Загадка строения недр нейтронных звезд волнует и астрофизиков, и физиков. Наше понимание ядерной физики и поведения вещества при сверхвысокой плотности неполно без разрешения этого вопроса. Вполне вероятно, что именно гравитационно-волновые наблюдения сыграют здесь ключевую роль.



Считается, что именно слияния нейтронных звезд ответственны за короткие космологические гамма-всплески. В редких случаях удастся одновременно наблюдать событие сразу и в гамма-диапазоне, и на гравитационно-волновых детекторах (редкость связана с тем, что, во-первых, гамма-сигнал сконцентрирован в очень узкий луч, и он не всегда направлен на нас, а во-вторых, от очень далеких событий мы не зарегистрируем гравитационных волн). Видимо, понадобится несколько лет наблюдений, чтобы удалось это увидеть (хотя, как обычно, может повезти, и это произойдет прямо сегодня). Тогда, кроме всего прочего, мы сможем очень точно сравнить скорость гравитации со скоростью света.

Таким образом, лазерные интерферометры вместе будут работать как единый гравитационно-волновой телескоп, приносящий новые знания и астрофизикам, и физикам. Ну а за открытие первых всплесков и их анализ рано или поздно будет вручена заслуженная Нобелевская премия.

Автор — ведущий научный сотрудник Государственного астрономического института им. П.К. Штернберга (ГАИШ) МГУ, автор книги «Суперобъекты: звезды размером с город»

Источник: TechInsider

Оффлайн Новичёк

  • Administrator
  • Hero
  • *****
  • Сообщений: 15295
  • Репутация: +27/-108
    • Личное сообщение (Оффлайн)
Re: Новости науки и технологии
« Ответ #6103 : Июля 03, 2022, 19:17:58 »
Создан точный инструмент редактирования генов, который превосходит даже CRISPR

Каким бы важным ни был инструмент редактирования генов CRISPR-Cas9, он имеет относительно высокий уровень ошибок, которые могут привести к потенциально опасным мутациям. Исследователи из Германии разработали более совершенный инструмент, который уменьшает количество ошибок, взламывая ДНК, а не разрезая ее.




CRISPR — одно из самых новаторских изобретений века, способное произвести революцию в генной терапии целого ряда заболеваний, а также улучшить урожайность или питание сельскохозяйственных культур, создать полезные микробы и множество других применений. Он работает как пара «молекулярных ножниц», вырезая проблемные гены и вставляя более полезные.

Проблема в том, что иногда он может нацеливаться на неправильный участок ДНК и вносить в него изменения, известные как нецелевые мутации, которые потенциально могут вызвать проблемы со здоровьем. Даже если он получит правильную цель, процесс восстановления ДНК может пойти не так и привести к тому, что называется мутацией на цели.

Предотвращение обеих этих проблем было в центре внимания нового исследования, проведенного исследователями из Центра молекулярной медицины Макса Дельбрюка (MDC) и Берлинского университета имени Гумбольдта. Команда модифицировала эти молекулярные ножницы, сделав их более мягкими, что привело к принципиально другому типу разреза.

Вместо того, чтобы делать один разрез, который разрезает всю двойную цепочку ДНК, новый инструмент делает два меньших разреза, каждый из которых разрезает одну нить ДНК. Встроенная прокладка удерживает эти зазубрины на безопасном расстоянии друг от друга — от 200 до 350 пар оснований.

«Наши эксперименты с гемопоэтическими стволовыми клетками и Т-клетками показали, что это оптимальное расстояние для минимизации как целевых, так и нецелевых мутаций», — рассказал доктор Ван Трунг Чу, соавтор исследования. «Еще чуть короче, и мы рискуем разрезать всю молекулу ДНК — несмотря на использование двух отдельных ножниц».

При тестировании клеток в лабораторных чашках команда обнаружила, что новый инструмент «спейсер-ник» был примерно так же эффективен при внесении изменений, как и обычный CRISPR — от 20 до 50 процентов обработанных клеток были восстановлены. Но важно то, что новый инструмент значительно снижал количество ошибок: целевые мутации происходили менее чем в двух процентах правок с помощью пробела по сравнению с более чем 40 процентами для CRISPR-Cas9. Тем временем нецелевые мутации оказались «редким, если не несуществующим явлением в нашем подходе», — отметил Чу.

Команда надеется, что в будущих работах инструмент редактирования пробелов будет протестирован на животных, прежде чем переходить к испытаниям на людях. Одной из первых потенциальных целей является лечение наследственных заболеваний крови.

Источник: TechInsider

Оффлайн Новичёк

  • Administrator
  • Hero
  • *****
  • Сообщений: 15295
  • Репутация: +27/-108
    • Личное сообщение (Оффлайн)
Re: Новости науки и технологии
« Ответ #6104 : Июля 03, 2022, 19:19:59 »
Китайцы создали искусственный интеллект масштаба человеческого мозга

Производительность OceanLight заявлена на уровне 5,3 ExaFLOPS


Китайские ученые создали то, что они называют «моделью искусственного интеллекта в масштабе человеческого мозга», на основе одного из своих последних суперкомпьютеров с процессорами Sunway. Ученые утверждают, что модель ИИ со 174 триллионами параметров может быть использована для самых разных приложений, начиная от автономных транспортных средств и заканчивая научными исследованиями.

Используемая система Sunway OceanLight основана на 96 000 узлов, работающих на гибридных 390-ядерных процессорах Sunway SW39010, имеющих в общей сложности почти 40 миллионов ядер. Эта машина рекламировалась как один из первых в мире экзафлопсных суперкомпьютеров.

Китайская группа исследователей из Национального исследовательского центра параллельной вычислительной техники и технологий (NRCPC) подтверждает, что созданная модель искусственного интеллекта включает около 174 триллионов параметров, что позволяет ей соперничать с количеством синапсов в человеческом мозгу. Фактическая производительность OceanLight теперь заявлена на уровне 5,3 ExaFLOPS с искусственным интеллектом, хотя ранее было заявлено, что она составляет 4,4 ExaFLOPS со смешанной точностью.



Ученые из NRCPC сообщили South China Morning Post, что для достижения достойной производительности с помощью модели искусственного интеллекта в масштабе мозга им пришлось внедрить «аппаратную внутриузловую оптимизацию», а также «гибридные параллельные стратегии» в беспрецедентном масштабе. Учитывая тот факт, что OceanLight включает 96 000 узлов и почти 40 миллионов ядер, оптимизация аппаратного и программного обеспечения для этой системы представляет собой очень непростую задачу.

Объявление о беспрецедентной модели искусственного интеллекта было сделано через несколько недель после того, как Ок-Риджская национальная лаборатория официально представила свой Frontier — первый в мире суперкомпьютер с производительностью 1,102 FP64 ExaFLOPS в тесте Linpack. Примечательно, что NRCPC официально не публиковала результаты производительности своего OceanLight в списке 500 лучших суперкомпьютеров.

Источник: IXBT

Оффлайн Новичёк

  • Administrator
  • Hero
  • *****
  • Сообщений: 15295
  • Репутация: +27/-108
    • Личное сообщение (Оффлайн)
Re: Новости науки и технологии
« Ответ #6105 : Июля 03, 2022, 19:26:09 »
Изобретение советских физиков может обеспечить энергией весь мир на миллионы лет

Небольшой старт-ап собирается обеспечить энергией все человечество. В основе разработки лежит давнее изобретение советских физиков — гиротрон.




Неисчерпаемая энергия у нас прямо под ногами, вот только непонятно, как ее достать

Если бы физик Пол Васков не был сотрудником солидного Массачусетского технологического института, его бы никто слушать вообще не стал. Васков уже много лет носится с совершенно безумной идеей своего рода «вечного двигателя» или, иначе говоря, неисчерпаемого источника энергии.

Мы все, конечно, знаем, что чем глубже под землю, — тем горячее. Если опуститься достаточно глубоко, например, на 12 км (такова глубина Кольской сверхглубокой скважины), температура достигнет 220°C. А если на 20 км? Да, тепло Земли спокойно можно считать «неисчерпаемым». Проблема только одна: как его достать? Хорошо, если оно само поднимается наверх, — просачивается, как горячие источники, но это случается в очень немногих местах Земли, например, в Исландии.

Научный сотрудник МГУ Сергей Дегтярев пишет: «Теоретически только за счет геотермальной энергии можно было бы полностью удовлетворить энергетические потребности страны. Практически же на данный момент на большей части ее территории это неосуществимо по технико-экономическим соображениям».

Как сделать скважину глубиной 20 км?
 
Пол Васков несмотря на недоумение, которое долгое время вызывали его идеи, утверждает, что геотермальную энергию вполне можно «добыть». И не когда-нибудь в далеком будущем, а практически сегодня. Для этого все есть. Надо только правильно применить сделанное.

Идея Васкова состоит в том, что сначала надо сделать скважину глубиной в 20 км... На этом месте его собеседники как-то сразу теряли к нему всякий интерес, и если бы он не был сотрудником уважаемого института, скорее всего послали бы куда подальше. А зря.

Васков разработал метод глубокого бурения безо всяких буров. Он предложил делать скважины способом выпаривания. Узкий пучок энергии направляется вертикально в землю в том месте, где нужно сделать скважину. Материал закипает и испаряется, а пар откачать.

Остается последний вопрос: где взять такой мощный пучок энергии. А вот на этот, самый, кажется, трудный вопрос у Воскова ответ готов уже давно. Он профессионально занимается методами термоядерного синтеза. А плазму в реакторе обычно разогревают мощными генераторами СВЧ-излучения — гиротронами. Если послать пучок гиротрона в землю — камень испарится.


Восков демонстрирует образцы камней выпаренных гиротроном в своей лаборатории в 2016 году. Фото: Пол Ривенберг.

Попытка реализации

В 2018 году идеи Воскова привлекли внимание Карлоса Араке, который всю свою карьеру работал в нефтегазовой отрасли и в то время был техническим директором инвестиционного фонда MIT The Engine.

В том же году Карлос Арак и Мэтт Худ, которые работали с геотермальной компанией AltaRock Energy, основали старт-ап Quaise. Вскоре Министерство энергетики предоставило Quaise грант на расширение экспериментов Воскова с использованием более крупного гиротрона, пишет Techxplore.

Первую испытательную скважину Quaise планирует «выпарить» уже в следующем году. А в 2026 компания планирует начать сбор энергии из пилотных геотермальных скважин, температура горных пород которых достигает 500°C.

Мэтт Худ говорит, что остались «инженерные задачи, которые мы должны решить, но мы не работаем против законов физики. Это скорее вопрос преодоления некоторых технических и финансовых трудностей».

Откуда появились гиротроны

Принцип работы гиротронов был обоснован советскими физиками еще в 1950-1960 годы. А в 1970-1980 годы гиротроны стали строить в Нижнем Новгороде.

Сегодня этим занимается компания ГИКОМ. Гиротроны ГИКОМа работают по всему миру, в том числе на проекте термоядерного синтеза ИТЭР.

Так что нет непреодолимых препятствий, чтобы заняться добычей геотермальной энергии и в России. Правда, придется самим решить «инженерные задачи», но, если с этим удастся справиться, энергии и, правда, будет много. Земля внутри очень горячая.

Источник: TechInsider

 

Последние сообщения на форуме:

[Наука] Re: Новости науки и технологии от Новичёк Июля 03, 2022, 19:26:09
[Наука] Re: Новости науки и технологии от Новичёк Июля 03, 2022, 19:19:59
[Наука] Re: Новости науки и технологии от Новичёк Июля 03, 2022, 19:17:58
[Политика] Re: Информационная безопасность от Новичёк Июля 03, 2022, 19:14:14
[Политика] Re: Информационная безопасность от Новичёк Июля 03, 2022, 19:11:30
[Автолюбителям] Re: Технологии автоматизированного вождения от Новичёк Июля 03, 2022, 19:06:29
[Непознанное] Re: Что вы думаете об НЛО ? от Новичёк Июля 03, 2022, 19:02:58
[Религия] Re: Религия - опиум для народа от Новичёк Июля 03, 2022, 18:58:49
[История] Фильм "Неуловимые мстители" и российский флаг от Новичёк Июня 30, 2022, 15:35:53
[О разоблаченных шарлатанах и созданных ими "учениях"] Re: Разоблачение шарлатанов от Новичёк Июня 29, 2022, 21:19:44
[Беседка] Re: CDEK - худший сервис доставки. от john Июня 26, 2022, 10:00:25
[Беседка] CDEK - худший сервис доставки. от john Июня 24, 2022, 12:04:27
[О разоблаченных шарлатанах и созданных ими "учениях"] Re: Разоблачение шарлатанов от Новичёк Июня 20, 2022, 16:11:44
[Наука] Re: Новости науки и технологии от Новичёк Июня 19, 2022, 23:55:17
[Наука] Re: Новости науки и технологии от Новичёк Июня 19, 2022, 23:46:49
[Наука] Re: Новости науки и технологии от Новичёк Июня 19, 2022, 23:42:36
[История] Re: История хранения и передачи звука от Новичёк Июня 19, 2022, 22:55:51
[Экономика] Экономика и банки от Новичёк Июня 19, 2022, 22:51:57
[Автолюбителям] Re: Технологии автоматизированного вождения от Новичёк Июня 19, 2022, 22:44:39
[Политика] Re: Информационная безопасность от Новичёк Июня 15, 2022, 00:30:09